首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1368篇
  免费   40篇
  国内免费   34篇
  2023年   8篇
  2022年   14篇
  2021年   11篇
  2020年   17篇
  2019年   15篇
  2018年   17篇
  2017年   17篇
  2016年   17篇
  2015年   17篇
  2014年   50篇
  2013年   88篇
  2012年   28篇
  2011年   38篇
  2010年   30篇
  2009年   56篇
  2008年   38篇
  2007年   49篇
  2006年   51篇
  2005年   47篇
  2004年   71篇
  2003年   44篇
  2002年   43篇
  2001年   29篇
  2000年   32篇
  1999年   31篇
  1998年   27篇
  1997年   26篇
  1996年   31篇
  1995年   30篇
  1994年   35篇
  1993年   36篇
  1992年   30篇
  1991年   33篇
  1990年   30篇
  1989年   21篇
  1988年   33篇
  1987年   17篇
  1986年   17篇
  1985年   33篇
  1984年   36篇
  1983年   29篇
  1982年   31篇
  1981年   27篇
  1980年   27篇
  1979年   12篇
  1978年   10篇
  1977年   3篇
  1976年   5篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1442条查询结果,搜索用时 15 毫秒
1.
2.
The gene of a bacterial lysine decarboxylase (ldc) fused to arbcS transit peptide coding sequence (tp), and under the control of the CaMV 35S promoter, was expressed in hairy root cultures ofNicotiana tabacum. The fusion of theldc to the targeting signal sequence improved the performance of the bacterial gene in the plant cells in many respects. Nearly all transgenic hairy root cultures harbouring the35S-tp-ldc gene contained distinctly higher lysine decarboxylase activity (from 1.5 to 30 pkat LDC per mg protein) than those which had been transformed with constructs in which the gene had been directly cloned behind the CaMV 35S promoter. The higher enzyme activity led to the accumulation of up to 0.7% cadaverine on a dry mass basis. In addition, part of the cadaverine pool was used for increased biosynthesis of anabasine, an alkaloid which was hardly detectable in control cultures. The best line contained anabasine levels of 0.5% dry mass, which could further be enhanced by feeding of lysine.  相似文献   
3.
When Ehrlich ascites tumour cells are induced to proliferate by serum stimulation, the ornithine decarboxylase (ODC) activity increases rapidly and reaches two to three peaks during the first 24 h. Inhibition of the first peak in ODC activity (occurring at 4 h) by adding alpha-difluoromethylornithine (DFMO) within 2 h of serum stimulation, results in maximal growth inhibition. Under these conditions, similar degrees of polyamine depletion are achieved. When DFMO is added 3 h after seeding, however, enough polyamines have already accumulated during the initial burst in ODC activity to reduce the antiproliferative effect of the drug. The antiproliferative effect is further reduced when DFMO is added 6 h after seeding. When DFMO is added 23 h after seeding, i.e. after maximal accumulation of polyamines, there is no inhibition of cell proliferation. These findings are important to consider both when designing experimental as well as clinical regimens for this drug.  相似文献   
4.
5.
Several species of ornithine decarboxylase were separated by chromatography of rat thymus and kidney extracts on DEAE-Sepharose CL-6B. One major and one minor species were absent from thymus of rats two hours after hormone treatment but otherwise, the elution profile was identical to thymus from control animals. The elution patterns of ODC activity in kidneys of rats treated 2.5 or 5 hours before sacrifice with dexamethasone differ from that of control kidney and from each other. Enzyme from kidneys early after hormone treatment is eluted earlier than enzyme from control tissue, while at 5 hours, the enzyme is eluted much later than in the control. This suggests that the hormone-induced activity is subsequently modified.  相似文献   
6.
Saccharomyces cerevisiae, Baker's yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate production of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to industrialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engineering efforts aimed at restoring growth in non-ethanol producing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many opportunities for improvement remain.  相似文献   
7.
Maize pyruvate decarboxylase mRNA is induced anaerobically   总被引:13,自引:0,他引:13  
A cDNA was identified using an oligonucleotide designed by comparing the sequences of bacterial and yeast pyruvate decarboxylase. The sequence of the cDNA identified by the oligonucleotide contained an open reading frame that encoded a protein of 65 kDa that was similar in sequence to bacterial and yeast pyruvate decarboxylase. This protein was selectively precipitated by an antiserum specific for maize PDC. Northern-blot analysis shows that PDC mRNA is anaerobically induced. Southern-blot analysis of maize genomic DNA indicated that the maize PDC gene has a single or low copy number.  相似文献   
8.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either liver or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injection of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from l-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from l-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of l-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   
9.
Mitochondrial 4-aminobutyrate aminotransferase in rat kidney can utilize pyruvate as the acceptor for the amino group of 4-aminobutyrate. Renal 4-aminobutyrate aminotransferase activity at saturating equimolar concentration of 4-aminobutyrate and 5 mM pyruvate is 42.8 ± 2.5 μmol/g protein per h (mean ± S.E.M.) or 70% of 4-aminobutyrate aminotransferase activity with equimolar α-ketoglutarate. 4-Aminobutyrate aminotransferase in brain does not transaminate with pyruvate. Since pyruvate is an important mitochondrial metabolite in kidney, net disposal of glutamate via the 4-aminobutyrate pathway is possible. The renal 4-aminobutyrate pathway in the rat has other distinctive features when compared with the pathway in rat brain. Most inhibitors of rat neuronal glutamate decarboxylase were ineffective against the renal form of the enzyme, but 20 mM semicarbazide inhibited the latter form by 80% (P < 0.001) in vitro and reduced renal 4-aminobutyrate content by 75% (P < 0.001) in vivo. In the presence of 20 mM semicarbazide, ammoniagenesis by rat renal cortex slices incubated in 1 mM glutamine was inhibited 26% (P < 0.01). Semicarbazide was proportionately less effective (15% inhibition) when ammoniagenesis was stimulated (+243%) in slices prepared from chronically acidotic animals, and was no deterrant to ammoniagenesis when non-acidotic slices were incubated in supraphysiologic concentrations of 10 mM glutamine. We conclude that whereas integrity of the renal 4-aminobutyrate pathway may contribute to glutamate disposal and thus ammoniagenesis under physiologic conditions, the pathway is a passive participant in the overall process of ammoniagenesis.  相似文献   
10.
Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass” isopentenol pathway using the promiscuous activity of a mevalonate diphosphate decarboxylase (PMD) and demonstrated improved performance under aeration-limited conditions. However, relatively low activity of PMD toward the non-native substrate (mevalonate monophosphate, MVAP) was shown to limit flux through this new pathway. By inhibiting all IPP production from the endogenous non-mevalonate pathway, we developed a high-throughput screening platform that correlated promiscuous PMD activity toward MVAP with cellular growth. Successful identification of mutants that altered PMD activity demonstrated the sensitivity and specificity of the screening platform. Strains with evolved PMD mutants and the novel IPP-bypass pathway increased titers up to 2.4-fold. Further enzymatic characterization of the evolved PMD variants suggested that higher isopentenol titers could be achieved either by altering residues directly interacting with substrate and cofactor or by altering residues on nearby α-helices. These altered residues could facilitate the production of isopentenol by tuning either kcat or Ki of PMD for the non-native substrate. The synergistic modification made on PMD for the IPP-bypass mevalonate pathway is expected to significantly facilitate the industrial scale production of isopentenol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号